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The optimal angle bandwidth and wavelength bandwidth of fourth-harmonic generation
(FHG) and fifth-harmonic generation (FIFHG) of the 1064 nm laser are analyzed based
on the numerical calculation results of non-collinear type-I and type-II phase match-
ing processes for general nonlinear uniaxial crystals with 1 cm length. The non-collinear
phase matching angles and effective nonlinear coefficients of FHG and FIFHG are cal-
culated. The optimal angle bandwidth and wavelength bandwidth are obtained. The

results are beneficial to broadband and efficient non-collinear phase matching FHG and
FIFHG experiments and studies.
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1. Introduction

The broadband high efficiency fourth harmonic generation (FHG) of lasers cannot
only be used as the optical probe of physical diagnostics,1 but also has the probabil-
ity of directly interacting with the nuclear target in ICF instead of third harmonic
generation (THG) lasers widely used at present.2 Shorter wavelength lasers increase
the energy absorption efficiency, reduce the instability of lasers and plasmas, and
suppress stimulated Brillouin scattering (SBS) and stimulated Raman scattering
(SRS).3 However, FHG can only support narrow bandwidth lasers limited by the
strong dispersion properties of materials in the UV region, which makes it difficult
to combine it with the present beam smoothing methods such as smoothing by
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spectral dispersion (SSD),4 so it is necessary to study the basic theory and develop
key technologies of producing efficient FHG for physical applications.

Second harmonic generation (SHG) and THG have been widely studied to get
ultrashort and ultra-intense lasers, and many effective technology methods have
been used for the phase matching of broadband pulses, such as achromatic phase
matching,5 chirp matched harmonic generation,6 multi-crystals design,7 quasi
phase matching,8 retracing point phase matching,9 etc. However, the non-collinear
phase matching technology is relatively a new study direction for its free geometry
configuration,10 and it can be used in the prefocusing scheme to get higher damage
threshold to avoid high-power laser damage.11 It is the primary purpose of this
paper to get optimal bandwidths for a cone or parallel laser beam in the prefocus-
ing scheme with a narrowband frequency propagating in a thin nonlinear crystal
(1 cm), to find a proper material for the broadband experiment and study.

In this paper, non-collinear phase matching theory is analyzed firstly, which pro-
vides the numerical calculation foundation for non-collinear FHG and FIFHG phase
matching angle (NCPMA), effective nonlinear coefficients (ENC), two kinds of angle
bandwidths (AB) and wavelength bandwidth (WB) of a 1064nm fundamental laser,
using KDP as an example in Sec. 2. In Sec. 3, the optimal angle bandwidth and
wavelength bandwidth and the corresponding phase matching angle and effective
nonlinear coefficients are numerically calculated in the same procession as FHG of
KDP for general nonlinear crystals such as DKDP, ADP, BBO, CLBO, and KBBF.

2. Non-Collinear Phase Matching Theory and Calculation
in KDP Crystal

FHG and FIFHG non-collinear phase matching theory is similar to SHG or THG,
which can all be described by the three-wave coupled equation.12 There are two
methods to get FHG 226 nm (4ω) laser, one is sum-frequency generation (SFG)
of a fundamental wave of 1064nm (ω) and its third harmonic wave 355nm (3ω)
(ω + 3ω → 4ω), the other is SHG of a 532nm (2ω) laser (2ω + 2ω → 4ω). Both
methods are calculated in type-I (o + o → e) and type-II (e + o → e) in this paper.
Meanwhile, the two methods for the FIFTH 213 nm (5ω) laser are SFG of a 1064nm
(ω) laser and a 226 nm laser (ω+4ω → 5ω), or SFG of a 532nm laser and a 355 nm
laser (2ω + 3ω → 5ω) with two types same as the FHG. The NCPMA, ENC, AB
and WB are calculated for the KDP crystal with 1 cm.

The calculation of angle bandwidth is based on two schemes. In scheme one, the
two inject waves are both cone beams, and in scheme two the first beam is parallel,
and the second beam is cone. These two schemes are both useful for the prefocusing
scheme used to avoid high power laser focusing damage.11

2.1. Non-collinear phase matching angle

The geometry configuration of non-collinear phase matching has been analyzed in
Ref. 13. The following equations are used to calculate the type-I phase matching
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(n1ω1

c

)2

+
(

n3(θ3)ω3

c

)2

−
(n2ω2

c

)2

= 2
n1ω1

c

n3(θ3)ω3

c
cos(θ3 − θ1), (2.1)

(n2ω2

c

)2

+
(

n3(θ3)ω3

c

)2

−
(n1ω1

c

)2

= 2
n2ω2

c

n3(θ3)ω3

c
cos(θ2 − θ3), (2.2)

where θ1, θ2 and θ3 are, respectively, the angle between z axis and three waves.
For type-II, the equations are almost the same, except that n1 is an extraordinary
light and should be replaced by n1(θ1). For KDP crystal, the phase matching angles
for FHG by non-collinear mixing the fundamental wave at 1064nm and the third
harmonic wave at 355 nm are numerically calculated by the above equations. Two
types of phase matching angle relationship curves are shown in Fig. 1.

In Fig. 1(a) for type-I, the region of θ3 satisfying the non-collinear phase match-
ing condition is from 59.95◦ to 120.05◦, and there are two pairs of θ1 and θ2 for
each given θ3. The blue pair of curves is for θ1 < θ3 < θ2 and the red pair is
for θ1 > θ3 > θ2. Points A and B, θ1 = θ3 = θ2, represent the collinear phase
matching angles for type-I. Similarly, the region of θ3 is from 72.03◦ to 107.97◦

for type-II in Fig. 1(b). The collinear phase matching angle is marked as point E,
but meanwhile, for this θ3 at point E, there is another θ1 and θ2 fitting the non-
collinear triangle. However, at points C and D, there is only one non-collinear phase
matching situation, while point C is for θ2 and point D is for θ1. Similar to type-I,
the blue pair is for θ1 < θ3 < θ2 and the red pair is for θ1 > θ3 > θ2. The two
pairs are center symmetry with each other about the point of (90◦, 90◦) in both
figures, because of the axis symmetry of the uniaxial crystal. The phase matching
angle region of type-I is bigger than type-II, the same situation also happens in
other crystals calculated in Sec. 3. This provides a convenient condition for the
experiment.

(a) (b)

Fig. 1. FHG NCPMA. The blue curve is for θ1 < θ3 < θ2, the red curve is for θ1 > θ3 > θ2. (a)
Type-I. Point A and B represent the collinear point. (b) Type-II. Point E represents the collinear
point, Point C and D represent the smallest value of θ2 and θ1 fitting non-collinear condition.
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(a) (b)

Fig. 2. (a) Type-I FHG ENC of KDP. (b) Type-II FHG ENC of KDP.

2.2. Effective nonlinear coefficients

The ENC for the nonlinear crystals is distinguished by the point group they
belong to. The expression for different point group may be different.14 The non-
collinear ENC is more complex than the collinear situation. For KDP belong-
ing to 4̄2m point group, the expression is deff =−d36 sin θ3 sin 2ϕ for type-I and
deff = d14 sin θ1 cos θ3 cos 2ϕ+d36 cos θ1 sin θ3 cos 2ϕ for type-II. ENC for FHG type-
I deff and FHG type-II d2

eff — the square index is eliminating the negative value
appearing in type-II — is calculated and shown in Figs. 2(a) and 2(b) respectively
based on the numerical calculation results of the FHG phase matching angles for
KDP crystal. The blue curve represents θ1 < θ3 < θ2 and the red curve represents
θ1 > θ3 > θ2. For type-I, the ENC of θ1 < θ3 < θ2 matching type is bigger when
θ1 < 90◦, so it should be chosen to get higher conversion efficiency. It should choose
the θ1 > θ3 > θ2 matching type for type-II for the same reason. Overall, the ENC
of type-I is much larger than that of type-II.

2.3. Angle bandwidth

According to the relationship of the conversion efficiency and phase mismatching
factor on the conditions of slowly varying amplitude approximation and small sig-
nal approximation, one can easily define the bandwidth of angle or wavelength.
Meanwhile, the phase matching factor can be expressed as

∆k = ∆k0 +
∂(∆k)

∂θ

∣∣∣∣
θ=θm

∆θ +
∂(∆k)

∂λ

∣∣∣∣
λ=λ0

∆λ + · · · , (2.3)

where θm is the phase matching angle, and λ0 is the center wavelength of the beam.
Two kinds of schemes mentioned in Sec. 2.1 are calculated for each set of θ1,

θ2, θ3. In scheme one the two inject beams are cone beams, where the edge-ray can
be considered as the center beam rotates by a small angle. Because every ray of
�k1 with a small departure angle from the center ray must has a corresponding ray
of �k2 with the same departure angle, the geometry relationship between the two
departure rays is the same as the center rays (Fig. 3(a)). While in scheme two the
first fundamental beam is a parallel light, and the second fundamental beam is a
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Fig. 3. Two kinds of angle bandwidth scheme. (a) �k1 and �k2 are both cone beams and (b) �k1 is
cone and �k2 is parallel.

cone beam, in this situation, the changing of θ2 causes the phase mismatching. The
schematic diagrams for the angle bandwidth of the two institutions are shown in
Fig. 3, separately.

Figure 4 shows the numerical calculation results of the angle bandwidth versus
θ3 for KDP crystal. For type-I (the dash-dotted curves), the blue curve shows
that the angle bandwidth has the maximum value of ∆θ1 = 1.813◦ at the non-
critical angle of θ3 = 90◦ for the cone inject beams. The red one shows that the
first fundamental beam is parallel and the second fundamental beam is cone. It
shows that the maximum value is ∆θ2 = 0.9935◦ at the minimal value of θ1 when
θ3 = 62.2◦. Meanwhile, for type-II (the solid curves), the angle of the maximum
value is a little larger than that from type-I for cone beams, and the maximum angle
bandwidth is 1.9897◦ when θ3 = 91.02◦, which is 0.9776◦ for the other matching
situation when θ3 = 73.77◦. The situation is almost the same for other crystals
mentioned below.

Fig. 4. Non-collinear FHG angle bandwidth of scheme one (blue curves) and scheme two (red
curves) with type-I (dash-dotted curves) and type-II (solid curves) for KDP.
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(a) (b)

Fig. 5. FHG Wavelength bandwidth for KDP. (a) Wavelength bandwidth region. (b) The maxi-
mum wavelength bandwidths for type-I (blue curve) and type-II (red curve).

2.4. Wavelength bandwidth

With the frequency relationship between the three beams, ∆ω2 = 2∆ω1, ∆ω3 =
3∆ω1, we have ∆λ2 = − λ2

2
2πc∆ω2 = − λ2

1
8πc2∆ω1 = − 1

2
λ2
1

2πc∆ω1 = ∆λ1/2 and ∆λ3 =
∆λ1/3. Figure 5 shows the numerical calculation results based on the definition
of wavelength bandwidth in Eq. (2.3). Figure 5(a) evidences that the wavelength
bandwidth for type-I has the maximum value around the uncritical angle, shown
as the yellow line, and the range of half wavelength bandwidth for all the possible
phase matching situation is within about 0.012 nm for the KDP crystal, shown as
the lines in the region between the yellow line and blue line. Figure 5(b) shows the
maximum wavelength bandwidths for type-I (the blue curve) and type-II (the red
curve), they are more or less equal to each other, which evidences that the phase
matching situation has almost no influence on the WB. The situation is almost the
same for other crystals mentioned in Sec. 3.

3. Calculation in Other Crystals and Discussion

We calculate the NCPMA, ENC, optimal AB and WB for FHG and FIFHG of
other usual uniaxial crystals in the same method as for the KDP crystal in Sec. 2.
These crystals are DKDP, ADP, BBO, BeSO4·4H2O, DADP, ADA, DADA, CLBO,
KABO, BABF, KBBF, LB4. They are selected for two reasons, one is that their
transparencies include the FHG and FIFHG of a 1064nm laser,15,16 the other is that
the non-collinear phase matching condition can be satisfied. The results are shown
in Tables 1 and 2. Not all crystals calculated are mentioned in the table but the
ones with the best performance in one or two items are mentioned. Table 1 shows
type-I non-collinear phase matching results, and Table 2 shows type-II non-collinear
phase matching results. Each table contains the angle bandwidth for the cone beams
(ABCC), the angle bandwidth for the first beam is parallel and the second beam is
cone (ABPC), wavelength bandwidth (WB), the corresponding non-collinear phase
matching angle (NCPMA) and effective nonlinear coefficient (ENC).
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Bandwidth analysis of non-collinear fourth and fifth harmonic generation

In Table 1 for type-I, the results evidence that for ABCC, BeSO4 · 4H2O has the
maximum value, but CLBO has the maximum ENC value. For ABPC, CLBO has
the maximum value, while BBO has the maximum ENC value. For WB, KBBF has
the maximum value, but CLBO has the maximum ENC value. Overall, for every
kind of bandwidth, CLBO has bigger ENC value than most of others, KDP and
DADP have the best aggregate performance.

In Table 2 for type-II, the results evidence that for ABCC, BeSO4 · 4H2O has
the maximum value, but CLBO has the maximum ENC value. For ABPC, KBBF
has the maximum value, while BBO has the maximum ENC value. For WB, KBBF
has the maximum value, but CLBO has the maximum ENC value. Overall, for
every kind of bandwidth, CLBO has bigger ENC value than most of others, KDP
and DADP have the best aggregate performance.

The optimal non-collinear phase matching angle bandwidth is much bigger than
that of collinear situation, while the wavelength bandwidth is more or less the same.
The reason is that, for the collinear angle bandwidth, the phase matching happens
at the intersection point of the �k1 +�k2 curve and �k3 curve in the wave vector space,
while the phase matching for the optimal bandwidth happens at the tangent point
for the non-collinear situation. Therefore, the phase mismatch factor changes more
slowly for the same angle changing in the latter. But for the wavelength bandwidth,
there is no such tangent point as the angle wavelength. Although BBO and KBBF
have bigger angle bandwidths or wavelength bandwidths, they are difficult to grow
to a proper size for most applications.17,18 CLBO has easy deliquescence in atmo-
spheric environment.19 Overall, KDP crystal has the best aggregate performance.

4. Conclusion

We have analyzed the theory of non-collinear phase matching for FHG and FIFHG.
Two kinds of angle bandwidth configurations and one kind of wavelength bandwidth
model were investigated. The phase matching angles for type-I and type-II FHG
and FIFHG were numerically calculated in detail, and the maximum angle band-
width and wavelength bandwidth were obtained for all the possible uniaxial crystals
satisfying the conditions as we know so far. The results are of use to help the exper-
imentalists choose the proper crystal and suitable configuration for non-collinear
FHG or FIFHG at 1064nm.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of
China Under Grant Nos. 61235009 and 11604206.

References

1. D. T. Attwood, Ultraviolet probing of laser-produced plasmas with picosecond pulses,
in Proc. SPIE 0097, 12th Intl Congress on High Speed Photography, 413 September
14, 1977, doi:10.1117/12.955253.

1750014-9



2nd Reading

April 10, 2017 9:58 WSPC/S0218-8635 145-JNOPM 1750014

D. Song et al.

2. W. Howard Lowdermilk, Status of the national ignition facility project, in Proc. 2nd
Annual Int. Conf. SPIE 3047, Solid State Lasers for Application to Inertial Confine-
ment Fusion, 16, December 8, 1997, doi:10.1117/12.294296.

3. Kruer, William L, The Physics of Laser Plasma Interactions (Westview Press,
Colorodo, 1988).

4. S. Skupsky et al., Improved laser-beam uniformity using the angular dispersion of
frequency-modulated light, J. Appl. Phys. 66(8) (1989) 3456–3462.

5. V. D. Volosov and E. V. Goryachkina, Compensation of phase-matching dispersion
in generation of nonmonochromatic radiation harmonics. I. Doubling of neodymium-
glass radiation frequency under free-oscillation conditions, Sov. J. Quantum Electron.
6(7) (1976) 854.

6. K. Osvay and I. N. Ross, Broadband sum-frequency generation by chirp-assisted
group-velocity matching, JOSA B 13(7) (1996) 1431–1438.

7. D. Eimerl, Quadrature frequency conversion, IEEE J. Quantum Electron. 23(8)
(1987) 1361–1371.

8. A. M. Schober, M. Charbonneau-Lefort and M. M. Fejer, Broadband quasi-phase-
matched second-harmonic generation of ultrashort optical pulses with spectral angular
dispersion, JOSA B 22(8) (2005) 1699–1713.

9. M. S. Webb, D. Eimerl and S. P. Velsko, Wavelength insensitive phase-matched
second-harmonic generation in partially deuterated KDP, JOSA B 9(7) (1992) 1118–
1127.

10. N. Boeuf et al., Calculating characteristics of non-collinear phase matching in uniaxial
and biaxial crystals, Opt. Eng. 39(4) (2000) 1016–1024.

11. J. Chen et al., Noncollinear third-harmonic generation with large angular acceptance
by noncritical phase matching in KDP crystal, Opt. Lett. 40(19) (2015) 4484–4487.

12. Y.-R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984),
pp. 575.

13. H. J. Liu et al., Phase matching analysis of non-collinear optical parametric process
in nonlinear anisotropic crystals, Opt. Commun. 197(4) (2001) 507–514.

14. R. W. Boyd, Nonlinear Optics, Handbook of Laser Technology and Applications
(Three-Volume Set) (Taylor & Francis, Oxfordshire, 2003), pp. 161–183.

15. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science
& Business Media, Germany, 2006).

16. V. G. Dmitriev, G. G. Gurzadyan and D. N. Nikogosyan, Handbook of Nonlinear
Optical Crystals, Vol. 64 (Springer, Germany, 2013).

17. A. E. Kokh et al., Growth and investigation of BBO crystals with improved char-
acteristics for UV harmonic generation, in Proc. Laser Material Crystal Growth and
Nonlinear Materials and Devices, Vol. 3610 (1999) 139–147.

18. C. T. Chen et al., Deep-UV nonlinear optical crystal KBe 2 BO 3 F 2discovery, growth,
optical properties and applications, Appl. Phys. B : Lasers Optics 97(1) (2009) 9–25.

19. F. Pan et al., Cracking mechanism in CLBO crystals at room temperature, J. Crystal
Growth 241(1) (2002) 129–134.

1750014-10


	Introduction
	Non-Collinear Phase Matching Theory and Calculation in KDP Crystal
	Non-collinear phase matching angle
	Effective nonlinear coefficients
	Angle bandwidth
	Wavelength bandwidth

	Calculation in Other Crystals and Discussion
	Conclusion

